35 research outputs found

    Depletion potentials near geometrically structured substrates

    Full text link
    Using the recently developed so-called White Bear version of Rosenfeld's Fundamental Measure Theory we calculate the depletion potentials between a hard-sphere colloidal particle in a solvent of small hard spheres and simple models of geometrically structured substrates: a right-angled wedge or edge. In the wedge geometry, there is a strong attraction beyond the corresponding one near a planar wall that significantly influences the structure of colloidal suspensions in wedges. In accordance with an experimental study, for the edge geometry we find a free energy barrier of the order of several kBTk_B T which repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure

    Discrete solvent effects on the effective interaction between charged colloids

    Get PDF
    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.Comment: 4 pages, 3 figure

    Depletion forces near curved surfaces

    Full text link
    Based on density functional theory the influence of curvature on the depletion potential of a single big hard sphere immersed in a fluid of small hard spheres with packing fraction \eta_s either inside or outside of a hard spherical cavity of radius R_c is calculated. The relevant features of this potential are analyzed as function of \eta_s and R_c. There is a very slow convergence towards the flat wall limit R_c \to \infty. Our results allow us to discuss the strength of depletion forces acting near membranes both in normal and lateral directions and to make contact with recent experimental results

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    Entropic torque

    Full text link
    Quantitative predictions are presented of a depletion-induced torque and force acting on a single colloidal hard rod immersed in a solvent of hard spheres close to a planar hard wall. This torque and force, which are entirely of entropic origin, may play an important role for the key-lock principle, where a biological macromolecule (the key) is only functional in a particular orientation with respect to a cavity (the lock)

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure

    Can Polymer Coils be modeled as "Soft Colloids"?

    Get PDF
    We map dilute or semi-dilute solutions of non-intersecting polymer chains onto a fluid of ``soft'' particles interacting via a concentration dependent effective pair potential, by inverting the pair distribution function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated exact depletion interaction induced by non-intersecting polymers between two walls. The mapping opens up the possibility of large-scale simulations of polymer solutions in complex geometries.Comment: 4 pages, 3 figures ReVTeX[epsfig,multicol,amssymb] references update

    Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion

    Full text link
    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hard-core pair potentials with a Yukawa tail which can be both repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective non-additive hard-core mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle ``repulsion through attraction'' effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard-spheres. The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative correction to several of the simulations. The main conclusions remain unchanged thoug

    Management of visual clutter in annotated 3D CAD models: A comparative study

    Full text link
    The use of annotations in CAD models has been an active area of research because of their ability to connect design information to specific aspects of the model s geometry. The effectiveness of annotations is determined by the ability to clearly communicate information. However, annotations can quickly create clutter and confusion as they increase both in number and complexity. Consequently, efficient interaction and visualization mechanisms become crucial. Despite recent standardizations of procedures for the presentation of textual information in CAD models, no explicit guidelines are available as to how to make annotated models more readable and manageable. In this paper, we present the results of a comparative study of different mechanisms to manage visual clutter in annotated 3D CAD models and offer recommendations based on our findings. Our results show that even basic interaction mechanisms have a substantial impact on user s performanceCamba, J.; Contero, M.; Johnson, M. (2014). Management of visual clutter in annotated 3D CAD models: A comparative study. Lecture Notes in Computer Science. 8518:405-416. doi:10.1007/978-3-319-07626-3_37S4054168518Kajko-Mattsson, M.: The State of Documentation Practice within Corrective Maintenance. In: IEEE International Conference on Software Maintenance, pp. 354–363. IEEE Press, New York (2001)Van De Vanter, M.L.: The Documentary Structure of Source Code. Information and Software Technology 44, 767–782 (2002)Haouari, D., Sahraoui, H., Langlais, P.: How Good is Your Comment? A Study of Comments in Java Programs. In: International Symposium on Empirical Software Engineering and Measurement, pp. 137–146. IEEE Press, New York (2011)ASME Y14.41-2012 Digital Product Definition Data Practices. The American Society of Mechanical Engineers, New York (2012)ISO 16792:2006 Technical Product Documentation – Digital Product Definition Data Practices. Organisation Internationale de Normalisation, Genève, Suisse (2006)Boehm, B., Bayuk, J., Desmukh, A., Graybill, R., Lane, J.A., Levin, A., et al.: Systems 2020 Strategic Initiative. DoD Systems Engineering Research Center. Technical Report, SERC-2010-TR-009 (2010)Quintana, V., Rivest, L., Pellerin, R.: Measuring and Improving the Process of Engineering Change Orders in a Model-Based Definition Context. International Journal of Product Lifecycle Management 6(2), 138–160 (2012)Alducin-Quintero, G., Rojo, A., Plata, F., Hernández, A., Contero, M.: 3D Model Annotation as a Tool for Improving Design Intent Communication: A Case Study on its Impact in the Engineering Change Process. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 349–356. ASME, New York (2012)Dorribo-Camba, J., Alducin-Quintero, G., Perona, P., Contero, M.: Enhancing Model Reuse through 3D Annotations: A Theoretical Proposal for an Annotation-Centered Design Intent and Design Rationale Communication. In: ASME International Mechanical Engineering Congress & Exposition. ASME, New York (2013)Ding, L., Davies, D., McMahon, C.: Sharing Information throughout a Product Lifecycle via Markup of Product Models. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 1267–1275. ASME, New York (2008)Ding, L., Ball, A., Patel, M., Matthews, J., Mullineux, G.: Strategies for the Collaborative Use of CAD Product Models. In: Proceedings of ICED 2009, 17th International Conference on Engineering Design, vol. 8, pp. 123–134 (2009)Ding, L., Davies, D., McMahon, C.A.: The Integration of Lightweight Representation and Annotation for Collaborative Design Representation. Research in Engineering Design 20(3), 185–200 (2009)Boujut, J.F., Dugdale, J.: Design of a 3D Annotation Tool for Supporting Evaluation Activities in Engineering Design. Cooperative Systems Design 6, 1–8 (2006)Bracewell, R.H., Wallace, K.M.: A Tool for Capturing Design Rationale. In: 14th International Conference on Engineering Design. Paper no. DS31_1437FPB (2003)Patel, M., Ball, A., Ding, L.: Curation and Preservation of CAD Engineering Models in Product Lifecycle Management. In: 14th International Conference on Virtual Systems and Multimedia Dedicated to Digital Heritage, pp. 59–66 (2008)Li, C., McMahon, C., Newnes, L.: Annotation in Product Lifecycle Management: A Review of Approaches. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 797–806 (2009)Ahlberg, C., Shneiderman, B.: Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 313–317 (1994)Fishkin, K., Stone, M.C.: Enhanced Dynamic Queries via Movable Filters. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 415–420 (1995)Noyes, L.: The Positioning of Type on Maps: The Effect of Surrounding Material on Word Recognition Time. Human Factors 22(3), 353–360 (1980)Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature Congestion: A Measure of Display Clutter. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 761–770 (2005)Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13(6), 1216–1223 (2007)Wolfe, J.M.: Guided Search 2.0: A Revised Model of Visual Search. Psychonomic Bulletin & Review 1(2), 202–238 (1994)Palmer, J.: Set-size Effects in Visual Search: the Effect of Attention is Independent of the Stimulus for Simple Tasks. Vision Research 34, 1703–1721 (1994)Rosenholtz, R.: Search asymmetries? What search asymmetries? Perception & Psychophysics 63(3), 476–489 (2001)Woodruff, A., Landay, J., Stonebraker, M.: Constant Information Density in Zoomable Interfaces. In: Working Conference on Advanced Visual Interfaces, pp. 57–65 (1998)Ellis, G., Bertini, E., Dix, A.: The Sampling Lens: Making Sense of Saturated Visualisations. In: Extended Abstracts on Human Factors in Computing Systems, pp. 1351–1354 (2005)Ellis, G., Dix, A.: Enabling Automatic Clutter Reduction in Parallel Coordinate Plots. IEEE Transactions on Visualization and Computer Graphics 12(5), 717–723 (2006)Frank, A.U., Timpf, S.: Multiple Representations for Cartographic Objects in a Multi-scale Tree – An Intelligent Graphical Zoom. Computers & Graphics 18(6), 823–829 (1994)Cipriano, G., Gleicher, M.: Text Scaffolds for Effective Surface Labeling. IEEE Transactions on Visualization and Computer Graphics 14(6), 1675–1682 (2008)Stein, T., Décoret, X.: Dynamic Label Placement for Improved Interactive Exploration. In: 6th International Symposium on Non-Photorealistic Animation and Rendering, pp. 15–21 (2008)Ali, K., Hartmann, K., Strothotte, T.: Label Layout for Interactive 3D Illustrations. Journal of WSCG 13(1), 1–8 (2005)Götzelmann, T., Hartmann, K., Strothotte, T.: Agent-Based Annotation of Interactive 3D Visualizations. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 24–35. Springer, Heidelberg (2006
    corecore